[192 Pages Report] The Hydrogen Storage Tanks & Transportation Market size was estimated at USD 3.26 billion in 2023 and expected to reach USD 3.96 billion in 2024, at a CAGR 22.62% to reach USD 13.60 billion by 2030.

Hydrogen storage involves a series of methodologies and technologies for capturing and containing hydrogen in a safe and accessible form for use. These methods include high-pressure tanks, cryogenic tanks, and solid-state storage, where hydrogen is encapsulated within complex chemical compounds. Hydrogen transportation deals with the movement of hydrogen from its production sites to its end-use sites. Akin to natural gas, hydrogen can be transported via pipelines, high-pressure tubes, on-road vehicles, and shipping methods. Efforts to mitigate climate change are propelling investments in renewable energy technologies, including hydrogen fuel cells. This growth is facilitated by supportive government policies, subsidies, and strategic partnerships aimed at reducing greenhouse gas emissions. However, high storage costs, safety concerns, and infrastructure requirements impact the product development. Thus, there is a pressing need for advanced research and innovations to overcome these hurdles and make hydrogen a viable alternative energy resource. The development of better materials for solid-state hydrogen storage, advancements in pipeline technology for hydrogen transport, the commodification of hydrogen in energy markets, and regulatory frameworks promoting safety are supporting the adoption of hydrogen storage tanks and transportation.

Material: Potential of carbon fibers to offer the highest strength-to-weight ratio

Carbon fibers present a high-strength and lightweight option for hydrogen storage tanks. Known for their robust and heat-resistant properties, these materials enhance the durability of tanks, effectively withstanding high pressure that is crucial in storing gaseous hydrogen. When compared to other materials, carbon fiber hydrogen tanks demonstrate higher fuel efficiency due to their lower weight. Glass fiber composite tanks are a lower-cost alternative to carbon fiber tanks. While not as strong or heat-resistant as carbon fibers, glass fiber composites still offer considerable strength and durability. They have been successfully utilized in many applications due to superior corrosion resistance and good insulating properties. However, glass fiber tanks tend to be heavier than carbon fiber ones, which can negatively impact fuel economy in vehicles. They may not withstand as high pressures, meaning they may require larger volumes to store equivalent amounts of hydrogen. Metal-based storage tanks, primarily made from materials such as steel and aluminum, have been the traditional choice for hydrogen storage due to their widespread availability and lower costs. These tanks are highly durable and reliable, making them well-suited for stationary storage of hydrogen. However, they are substantially heavier than their carbon and glass fiber counterparts, leading to efficiency losses in transportation applications. Additionally, metal tanks are susceptible to hydrogen embrittlement, a phenomenon where hydrogen atoms diffuse into the metal, causing it to become more brittle and potentially leading to failures.

Type: Advancements in type 4 tank materials and structure to offer improved storage performance

Type 1 is the most common hydrogen gas tank, a simple steel cylinder with a storage density of around 15 grams per liter. The operating pressure is from 200 to 300 bar, and it is typically utilized for industrial applications. Type 2 tank is an improvement over type 1, as it has additional fiberglass reinforcement on the outside, which increases its stability and allows gas storage at a higher pressure. The operating pressure for this tank is 100 to 500 bars, and it is used in industrial applications as well. The density of hydrogen in a type 2 tank is around 20 grams per liter. Type 3 hydrogen tanks have an inner liner of this aluminum tank, which is found in vehicles. Type 3 tanks can store hydrogen at pressures up to 350 bar and have a density of 25 grams per liter. Type 4 tank is a further development of the type 3 tank, with a plastic bladder inside to seal off the hydrogen. This allows for greater expansion than the aluminum liner and allows the tank to contain a higher pressure of hydrogen, leading to a higher density, typically around 40 grams per liter at an operating pressure of up to 875 bar. Type 4 tanks are commonly used in passenger and heavy-duty commercial vehicles.

Pressure: Need for tanks with pressure above 500 bar to offer superior energy density

Hydrogen storage tanks operating at pressures below 200 bar are typically used for stationary storage and relatively short-range transportation methods. This pressure bracket is associated with low energy density, making such tanks less suitable for large-scale, intensive operations. They often employ metal hydride storage technology, which, although safe and reliable, comes with high initial costs and lower relative capacity. Low-pressure tanks, however, boast fewer regulatory issues, making them a viable option for smaller-scale applications. Mid-pressure hydrogen storage tanks (200 to 500 bar) mark an optimal balance between storage capacity, energy efficiency, and safety. Frequently used in automotive applications, these tanks provide sufficient energy density for long-distance travel without compromising on safety. They generally utilize composite materials, lending to lighter, more compact designs enhancing the overall efficiency. However, periodic inspections are crucial to ensure material integrity under high pressure. Tanks operating at pressures above 500 bar are designed for high-capacity, long-range hydrogen transportation. These storage systems make use of advanced high-pressure technology to offer superior energy density, making them ideal for heavy-duty vehicles and large-scale power systems.

Application: Adoption of marine vessels for large volume transportation of hydrogen

Marine transport presents significant advantages for large-scale, international hydrogen supply chains. This method typically involves the transportation of liquefied hydrogen in cryogenic tanks at -253 degrees Celsius or carrying the gas in chemical carriers such as ammonia or Liquid Organic Hydrogen Carriers (LOHCs) where larger volumes can be transported. Several safety measures, including special tank designs and safety protocols, are allocated to ensure secure operations. In the realm of railway transportation, pressurized tube wagons and cryogenic tank wagons play a major role in hydrogen transport. It is a sustainable mode for land-based hydrogen transport with a substantial carrying capacity. The railway network can facilitate the movement of large quantities of hydrogen from production sites to usage points. Safety measures in railway transportation include impact-resistant shell designs and pressure-release devices on storage tanks. For smaller, localized hydrogen distribution, transportation by vehicles is utilized. Hydrogen is typically stored in high-pressure tanks at 350-700 bar and is transported using trucks equipped with such tanks. This mode is flexible and able to deliver hydrogen directly to refueling stations or industrial sites. Hydrogen-powered vehicles that employ fuel cells also have onboard hydrogen tanks. These tanks utilize carbon fibers for strength and an inner liner that prevents hydrogen leakage.


Regional Insights

In the Americas, there is a growing demand for hydrogen storage solutions, particularly for fuel cell vehicles and power generation. The Americas are home to multiple manufacturers of hydrogen storage solutions providing high-pressure tanks. Start-ups and collaborations are also increasingly influential in driving innovation in hydrogen storage and transport in the Americas. Asia is witnessing significant growth in hydrogen use, particularly in countries such as Japan and South Korea, which have high investments in hydrogen infrastructure and fuel cell technology. China is also rapidly expanding its hydrogen production and distribution network. Asia has a strong manufacturing base for hydrogen storage tanks, with major industrial conglomerates involved. China and India are also rapidly developing their capabilities in producing hydrogen storage technology. Asia has a strong manufacturing base for hydrogen storage tanks, with major industrial enterprises involved in advanced transportation solutions, including pipelines and specialized shipping. Europe has significant adoption of hydrogen technologies, with a strong emphasis on creating a sustainable hydrogen economy. The use of hydrogen is widespread, ranging from industrial applications to mobility and power generation. European companies are at the forefront of innovative hydrogen storage technologies. The MEA region demonstrates emerging interest in hydrogen technologies, mainly powered by the potential of green hydrogen production due to abundant renewable energy sources. While the production of hydrogen storage tanks is currently not as prevalent in MEA, there is potential for growth as the region looks to export hydrogen.

FPNV Positioning Matrix

The FPNV Positioning Matrix is pivotal in evaluating the Hydrogen Storage Tanks & Transportation Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the Hydrogen Storage Tanks & Transportation Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Key Company Profiles

The report delves into recent significant developments in the Hydrogen Storage Tanks & Transportation Market, highlighting leading vendors and their innovative profiles. These include AMS Composite Cylinders, BayoTech, Inc., BNH Gas Tanks, Chart Industries, Inc., Compagnie Plastic Omnium SE, Doosan Group, Everest Kanto Cylinder Ltd., Hbank Technologies Inc., Hexagon Purus ASA, INOX India Ltd., Linde PLC, Luxfer Group, L’AIR LIQUIDE S.A., Mahytec by HENSOLDT AG, McDermott International, Ltd., McPhy Energy S.A., Msn B.V., NPROXX B.V., Pragma Industries SAS, Quantum Fuel Systems LLC, Shijiazhuang Enric Gas Equipment Co., Ltd., Steelhead Composites, Inc., Taian Strength Equipments Co., Ltd., Tenaris S.A., Umoe Advanced Composites AS, Weldship Corporation, and Worthington Industries, Inc..


Market Segmentation & Coverage

This research report categorizes the Hydrogen Storage Tanks & Transportation Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Material
    • Carbon Fibers
    • Glass Fibers
    • Metals
  • Tank Type
    • Type 1
    • Type 2
    • Type 3
    • Type 4
  • Pressure
    • 200 - 500 bar
    • Above 500 bar
    • Below 200 bar
  • Application
    • Marine
    • Railways
    • Vehicles

  • Region
    • Americas
      • Argentina
      • Brazil
      • Canada
      • Mexico
      • United States
        • California
        • Florida
        • Illinois
        • New York
        • Ohio
        • Pennsylvania
        • Texas
    • Asia-Pacific
      • Australia
      • China
      • India
      • Indonesia
      • Japan
      • Malaysia
      • Philippines
      • Singapore
      • South Korea
      • Taiwan
      • Thailand
      • Vietnam
    • Europe, Middle East & Africa
      • Denmark
      • Egypt
      • Finland
      • France
      • Germany
      • Israel
      • Italy
      • Netherlands
      • Nigeria
      • Norway
      • Poland
      • Qatar
      • Russia
      • Saudi Arabia
      • South Africa
      • Spain
      • Sweden
      • Switzerland
      • Turkey
      • United Arab Emirates
      • United Kingdom


The report offers valuable insights on the following aspects:

  1. Market Penetration: It presents comprehensive information on the market provided by key players.
  2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.
  3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.
  4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.
  5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.

The report addresses key questions such as:

  1. What is the market size and forecast of the Hydrogen Storage Tanks & Transportation Market?
  2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the Hydrogen Storage Tanks & Transportation Market?
  3. What are the technology trends and regulatory frameworks in the Hydrogen Storage Tanks & Transportation Market?
  4. What is the market share of the leading vendors in the Hydrogen Storage Tanks & Transportation Market?
  5. Which modes and strategic moves are suitable for entering the Hydrogen Storage Tanks & Transportation Market?