[183 Pages Report] The Solar Energy Systems Market size was estimated at USD 205.38 billion in 2023 and expected to reach USD 229.87 billion in 2024, at a CAGR 12.22% to reach USD 460.42 billion by 2030.

A solar energy system represents a specific technology or set of components utilized in capturing, converting, storing, and/or distributing solar power. These systems are crucial in mitigating climate change, promoting sustainable development, and reducing dependency on fossil fuels. By employing solar-powered technologies, individuals and organizations can create a cleaner environment, conserve natural resources, and foster economic growth. They also offer financial advantages by creating manufacturing, installation, maintenance, and research jobs. In addition to grid-connected systems that feed surplus power back into the electrical grid, there are off-grid applications, including residential rooftop installations and portable charging devices that provide electricity access in remote locations without access to conventional utility services. Furthermore, hybrid systems combining solar energy with other renewable sources and storage options, including batteries, enable greater reliability and flexibility in meeting diverse energy needs. The promising government incentives and initiatives for solar panel installations, increased applications of solar energy in various verticals, and a rapid inclination toward renewable energy adoption are driving the growth of the solar energy systems market. However, high costs associated with building solar energy systems, climatic conditions, and geographical latitudes may affect the efficiency of solar panels and hinder market development. Nevertheless, the emerging innovations and surging R & D activities are paving the way for advanced solar energy systems and present immense opportunities for the industry’s progress.

Component : Adaptability toward solar energy system proliferates demand for hardware, services and solutions

Various components, solutions, and services contribute to efficient and sustainable energy generation in the solar energy system sector. These components include hardware, such as solar panels, batteries, and inverters, along with modules that utilize amorphous silicon cells, cadmium telluride silicon cells, monocrystalline silicon cells, and polycrystalline silicon cells for optimized power conversion. Batteries store excess solar-generated electricity for later use at night or on cloudy days. Inverters are integral to solar energy systems as they convert electricity generated by solar panels and are used in homes or businesses. A solar module is a collection of photovoltaic (PV) cells connected electrically and encapsulated within a durable frame to protect it from environmental factors. Amorphous silicon (a-Si) cells are thin-film solar cells that deposit non-crystalline silicon onto substrates like glass, plastic, or metal. Cadmium telluride silicon cells offer a cost-effective alternative to traditional silicon-based PV technologies due to their low material and production costs. Monocrystalline silicon (mono-Si) cells are made from high-purity single-crystal silicon ingots and are highly efficient among various solar cell types. Polycrystalline silicon cells are manufactured by melting multiple silicon crystals together and then cutting them. Solar energy systems offer services to manage assets, monitor networks, and meter data. These services include asset management for optimal solar system performance, meter data management to ensure accurate billing and consumption analysis, network monitoring for real-time system diagnostics, and remote metering to track performance parameters from afar. Employing these advanced components and solutions in the solar energy industry enables clean energy production that is both economically viable and environmentally friendly.

Technology: Adoption of thermal solar energy systems generating electricity in large-scale power plants

Thermal solar energy is a form of renewable energy that generates electricity or heat by harnessing the sun’s thermal (heat) energy. This technology utilizes solar collectors, specifically flat plate collectors or evacuated tube collectors, to absorb sunlight and convert it into usable heat. In addition, thermal solar energy systems can drive steam turbines to generate electricity in large-scale power plants, reducing greenhouse gas (GHG) emissions and contributing significantly to sustainable development. Concentrated Solar Power (CSP) technology focuses sunlight onto a small area using parabolic troughs, linear fresnel reflectors, dish stirling engines, or solar power towers. These systems use mirrors or lenses to focus sunlight onto a receiver that collects the concentrated thermal energy and converts it into high-temperature heat. CSP plants can integrate thermal energy storage systems to enable reliable power generation even during periods of low sunlight or nighttime hours, making them an attractive solution for grid stability. Photovoltaic(PV) technology converts sunlight into electricity using monocrystalline silicon, polycrystalline silicon semiconductor materials, thin-film materials, and emerging technologies, including perovskite solar cells. Advances in PV technology have increased efficiency and reduced costs, making it one of the most competitive renewable energy sources available. Furthermore, the modularity and scalability of PV systems make them suitable for various applications, from small off-grid installations to large utility-scale solar farms.

Source: Thriving new installation of solar energy systems owing to reduced system costs, and favorable government policies

A significant growth aspect of the solar energy system market involves new installation and maintenance, repair, and operations (MRO) activities. New installations of solar energy systems have been thriving due to technological advancements, reduced system costs, and favorable government policies. The rising adoption of solar energy in utility-scale projects, residential areas, and commercial applications is embracing the need for solar power capacity expansion. The demand for MRO services in the solar energy sector is rising as new installations of solar systems are increasing simultaneously. Moreover, growing installations of solar systems in varying environmental conditions enhance the need for adequate MRO activities to ensure optimal functionality and longevity. Notable areas within MRO services include preventative maintenance tasks, monitoring system performance through advanced analytics, replacing aging components, repairing physical damages from natural disasters or accidents, and upgrading existing systems with newer technologies for improved efficiency.

Deployment: Preferences for hybrid solar energy systems for improved reliability & reduced environmental impact

Off-grid solar energy systems, also known as stand-alone power systems (SAPS), are designed to operate independently from the main utility grid and are helpful in remote locations. Off-grid systems rely on various components, such as photovoltaic (PV) panels, deep-cycle batteries for energy storage, charge controllers to regulate battery charging and discharging, inverters to convert the direct current (DC) generated by PV panels into alternating current (AC), and backup generators for additional support. Due to their self-contained nature, off-grid solar energy systems offer a sustainable and cost-effective option to traditional fossil fuel-powered generators. On-grid solar energy systems, also known as grid-tied or grid-connected systems, work in sync with the existing utility grid. They allow the users to generate electricity from PV panels during daylight hours and store excess power into the grid through net metering, enabling users to offset their electricity consumption costs. On-grid systems primarily consist of PV panels, inverters synchronizing the generated power with the grid’s frequency and voltage requirements, and safety devices such as disconnect switches. An essential advantage of on-grid solar energy systems is their ability to provide stable power without requiring expensive battery storage solutions. Hybrid solar energy systems combine features of both off-grid and on-grid configurations by integrating renewable generation sources with battery storage capabilities. These advanced setups offer increased flexibility and resilience by allowing users to store excess electricity generated by PV panels in batteries instead of exporting it back into the grid. Hybrid solar energy systems typically include PV panels, charge controllers, inverters, batteries, and additional renewable sources, including wind turbines or hydroelectric generators. Therefore, hybrid solar systems offer a versatile energy solution with improved reliability, economic benefits, and reduced environmental impact.

End-user: Proliferation in industrial setting to minimize greenhouse gas emissions, and comply with environmental regulations

Commercial end-users of solar energy systems, such as businesses, offices, and real estate developers, increasingly utilize solar power as an endurable and cost-effective alternative to traditional electricity sources. These entities choose solar energy to reduce their carbon footprint, adhere to corporate social responsibility goals, and benefit from government incentives or rebates. Installing solar panels on commercial buildings can also enhance the property’s value and attract environmentally conscious tenants. Industrial end-users are manufacturing facilities, factories, warehouses, and large-scale production plants implementing solar energy systems to meet high-energy demands while decreasing operational expenses. Integrating solar power in industrial settings helps companies significantly lower their reliance on fossil fuels, minimize greenhouse gas emissions, and comply with environmental regulations. Furthermore, optimizing self-generated renewable energy strengthens their resilience against fluctuations in grid-supplied electricity costs. Residential end-users refer to homeowners investing in rooftop solar panels or community-shared solar projects for generating clean energy at a localized level. This category aims to reduce household electricity bills over time and mitigate the impact of utility rate increases by harnessing the sun’s power through photovoltaic cells. Residential adoption of solar energy fosters environmental stewardship by curbing CO2 emissions and contributing toward a greener future. Additionally, installing solar systems enhances home values while benefiting from tax credits or other financial incentives provided by government policies.

Regional Insights

In the Americas, solar power is emerging as a rapidly expanding industry, owing to federal tax incentives, such as Investment Tax Credit (ITC), state-level policies, including Renewable Portfolio Standards (RPS), and net metering schemes that support residential installations. Furthermore, Latin American countries, including Brazil, Mexico, and Chile, are gaining momentum by implementing clean energy auctions and financing mechanisms to attract investments. The EMEA region showcases diverse dynamics within the solar energy system market. European countries, including Italy, France, Germany, and Spain, are at the forefront of adopting solar technology. The European Union’s ambitious renewable energy targets for 2030 have spurred significant investments. Meanwhile, the Middle East and Africa present vast opportunities for expansion owing to abundant sunshine hours and untapped markets. APAC has emerged as another key player in the global solar energy system market due to its rapidly growing economies and increasing demand for clean power generation. China leads this region with massive manufacturing capabilities enabling it to cater to domestic demand and export markets. Other prominent nations such as India, Japan, and Australia invest heavily in solar infrastructure development through favorable policy frameworks such as Feed-in Tariffs (FiTs) and government subsidies. Government policies, economic factors, and growing awareness of renewable energy sources drive the diverse market dynamics in each region. Solar technology plays a pivotal role in transforming the global energy mix as the world works toward sustainable energy goals.

FPNV Positioning Matrix

The FPNV Positioning Matrix is pivotal in evaluating the Solar Energy Systems Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the Solar Energy Systems Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Key Company Profiles

The report delves into recent significant developments in the Solar Energy Systems Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Abengoa, Acciona, S.A., Canadian Solar Inc., Complete Solaria Inc., Engie, Enphase Energy, Inc., First Solar, Inc., Hanwha Solutions Corporation, JA SOLAR Technology Co., Ltd., Jiangsu Zhongli Group Co., Ltd., Jinko Solar Co., Ltd., Kaneka Corporation, LONGi Green Energy Technology Co., Ltd., New BrightSource, Ltd., NextEra Energy Resources, LLC., Petronas Group, Reliance Industries Ltd., Risen Energy Co., Ltd., Schneider Electric SE, Sharp Corporation, Siemens AG, SolarEdge Technologies Inc., SunPower Corporation, Suzlon Energy Limited, Tata Power Solar Systems Limited, Trina Solar Co., Ltd., United Renewable Energy LLC, Vivint, Inc., and Yingli Energy Development Co., Ltd..

Market Segmentation & Coverage

This research report categorizes the Solar Energy Systems Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Component
    • Hardware
      • Batteries
      • Inverters
      • Module
        • Amorphous Silicon Cells
        • Cadmium Telluride Silicon Cells
        • Monocrystalline Silicon Cells
        • Polycrystalline Silicon Cells
      • Solar Panels
    • Services
    • Solutions
      • Asset Management
      • Meter Data Management
      • Network Monitoring
      • Remote Metering
  • Technology
    • Concentrated
    • Photovoltaic
    • Thermal Solar
  • Source
    • MRO
    • New Installation
  • Deployment
    • Hybrid
    • Off Grid
    • On Grid
  • End-user
    • Commercial
    • Industrial
    • Residential

  • Region
    • Americas
      • Argentina
      • Brazil
      • Canada
      • Mexico
      • United States
        • California
        • Florida
        • Illinois
        • New York
        • Ohio
        • Pennsylvania
        • Texas
    • Asia-Pacific
      • Australia
      • China
      • India
      • Indonesia
      • Japan
      • Malaysia
      • Philippines
      • Singapore
      • South Korea
      • Taiwan
      • Thailand
      • Vietnam
    • Europe, Middle East & Africa
      • Denmark
      • Egypt
      • Finland
      • France
      • Germany
      • Israel
      • Italy
      • Netherlands
      • Nigeria
      • Norway
      • Poland
      • Qatar
      • Russia
      • Saudi Arabia
      • South Africa
      • Spain
      • Sweden
      • Switzerland
      • Turkey
      • United Arab Emirates
      • United Kingdom

The report offers valuable insights on the following aspects:

  1. Market Penetration: It presents comprehensive information on the market provided by key players.
  2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.
  3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.
  4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.
  5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.

The report addresses key questions such as:

  1. What is the market size and forecast of the Solar Energy Systems Market?
  2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the Solar Energy Systems Market?
  3. What are the technology trends and regulatory frameworks in the Solar Energy Systems Market?
  4. What is the market share of the leading vendors in the Solar Energy Systems Market?
  5. Which modes and strategic moves are suitable for entering the Solar Energy Systems Market?