Table of Content


1. PREFACE
1.1. Scope of the Report
1.2. Market Segmentation
1.3. Research Methodology
1.4. Key Questions Answered
1.5. Chapter Outlines

2. EXECUTIVE SUMMARY

3. INTRODUCTION
3.1 Chapter Overview
3.2. Overview of Digital Twins in Healthcare
3.3.1. Types of Digital Twins Used in Healthcare
3.3.1. Process Twin
3.3.2. System Twin
3.3.3. Human Body Twin
3.4. Primary Applications of Digital Twins in the Healthcare Domain
3.4.1. Asset / Process Management
3.4.2. Evaluation of Clinical Trials
3.4.3. Personalized Treatment
3.4.4. Surgical Planning
3.5. Concluding Remarks

4. MARKET LANDSCAPE
4.1. Chapter Overview
4.2. Digital Twins in Healthcare: Overall Market Landscape
4.2.1. Analysis by Status of Development
4.2.2. Analysis by Therapeutic Area
4.2.3. Analysis by Area(s) of Application
4.2.4. Analysis by Type of Technology Used
4.2.5. Analysis by End User
4.2.6. Analysis by Type of Digital Twin
4.3. Digital Twins in Healthcare: Developers Landscape
4.3.1. Analysis by Year of Establishment
4.3.2. Analysis by Company Size
4.3.3. Analysis by Location of Headquarters

5. KEY INSIGHTS
5.1. Chapter Overview
5.2. Analysis by Area of Application and Status of Development (Stacked Bar Chart)
5.3. Analysis by Type of Technology Used and Type of Digital Twin (Heat Map Representation)
5.4. Analysis by Type of End User and Type of Digital Twin (Grid Representation)
5.5. Analysis by Area of Application and Location of Headquarters (Bar Chart)
5.6. Analysis by Company Size and Location of Headquarters (Hybrid Chart)

6. COMPANY COMPETITIVENESS ANALYSIS
6.1. Chapter Overview
6.2. Assumptions and Key Parameters
6.3. Methodology
6.4. Digital Twins in Healthcare: Company Competitiveness Analysis
6.4.1. Company Competitiveness Analysis: Benchmarking of Portfolio Strength
6.4.2. Company Competitiveness Analysis: Benchmarking of Partnership Activity
6.4.3. Company Competitiveness Analysis: Benchmarking of Funding Activity
6.4.4. Company Competitiveness Analysis: Very Small Companies
6.4.5. Company Competitiveness Analysis: Small Companies
6.4.6. Company Competitiveness Analysis: Mid-sized Companies
6.4.7. Company Competitiveness Analysis: Large Companies
6.4.8. Company Competitiveness Analysis: Very Large Companies

7. COMPANY PROFILES
7.1. Chapter Overview
7.2. Babylon
7.2.1. Company Overview
7.2.2. Recent Developments and Future Outlook
7.3. ExactCure
7.3.1. Company Overview
7.3.2. Recent Developments and Future Outlook
7.4. ImmersiveTouch
7.4.1. Company Overview
7.4.2. Recent Developments and Future Outlook
7.5. Navv Systems
7.5.1. Company Overview
7.5.2. Recent Developments and Future Outlook
7.6. ThoughtWire
7.6.1. Company Overview
7.6.2. Recent Developments and Future Outlook
7.7. Unlearn.AI
7.7.1. Company Overview
7.7.2. Recent Developments and Future Outlook

8. PARTNERSHIPS AND COLLABORATIONS
8.1. Chapter Overview
8.2. Digital Twins in Healthcare: Partnerships and Collaborations
8.2.1. Partnership Models
8.2.2. List of Partnerships and Collaborations
8.2.3. Analysis by Number of Partnership Instances
8.2.4. Analysis by Type of Partnership
8.2.5. Analysis by Year and Type of Partnership
8.2.6. Analysis by Type of Partnership and Company Size
8.2.7. Most Active Players: Analysis by Number of Partnerships
8.3.8. Analysis by Region
8.3.9. Intercontinental and Intracontinental Agreements

9. FUNDING AND INVESTMENTS ANALYSIS
9.1. Chapter Overview
9.2. Types of Funding
9.3. Digital Twins in Healthcare: List of Funding and Investments
9.3.1. Analysis by Number of Funding Instances
9.3.2. Analysis by Amount Invested
9.3.3. Analysis by Type of Funding
9.3.4. Analysis by Geography
9.3.5. Most Active Players: Analysis by Number of Funding Instances
9.3.6. Most Active Players: Analysis by Amount of Funding
9.3.7. Most Active Investors: Analysis by Number of Funding Instances
9.4. Concluding Remarks

10. BERKUS START-UP VALUATION ANALYSIS
10.1. Chapter Overview
10.2. Key Assumptions and Methodology
10.3. Berkus Start-Up Valuation: Total Valuation of Players
10.4. Digital Twins in Healthcare: Benchmarking of Berkus Start-Up Valuation Parameters
10.4.1. AnatoScope: Benchmarking of Berkus Start-Up Valuation Parameters
10.4.2. ExactCure: Benchmarking of Berkus Start-Up Valuation Parameters
10.4.3. Klinik Sankt Moritz: Benchmarking of Berkus Start-Up Valuation Parameters
10.4.4. KYDEA: Benchmarking of Berkus Start-Up Valuation Parameters
10.4.5. TwInsight: Benchmarking of Berkus Start-Up Valuation Parameters
10.4.6. Yokogawa Insilico Biotechnology: Benchmarking of Berkus Start-Up Valuation Parameters
10.5. Digital Twins in Healthcare: Benchmarking of Players
10.5.1. Sound Idea: Benchmarking of Players
10.5.2. Prototype: Benchmarking of Players
10.5.3. Management Experience: Benchmarking of Players
10.5.4. Strategic Relationships: Benchmarking of Players
10.5.5. Total Valuation: Benchmarking of Players

11. MARKET FORECAST
11.1. Chapter Overview
11.2. Key Assumptions and Methodology
11.3. Global Digital Twins Market, 2022-2035
11.3.1. Global Digital Twins Market: Analysis by Therapeutic Area
11.3.1.1. Global Digital Twins Market for Cardiovascular Disorders, 2022-2035
11.3.1.2. Global Digital Twins Market for Metabolic Disorders, 2022-2035
11.3.1.3. Global Digital Twins Market for Orthopedic Disorders, 2022-2035
11.3.1.4. Global Digital Twins Market for Other Disorders, 2022-2035
11.3.2. Global Digital Twins Market: Analysis by Type of Digital Twins
11.3.2.1. Global Process Twins Market, 2022-2035
11.3.2.2. Global System Twins Market, 2022-2035
11.3.2.3. Global Whole Body Twins Market, 2022-2035
11.3.2.4. Global Body Part Twins Market, 2022-2035
11.3.3. Global Digital Twins Market: Analysis by Area of Application
11.3.3.1. Global Digital Twins Market for Asset / Process Management, 2022-2035
11.3.3.2. Global Digital Twins Market for Personalized Treatment, 2022-2035
11.3.3.3. Global Digital Twins Market for Surgical Planning, 2022-2035
11.3.3.4. Global Digital Twins Market for Diagnosis, 2022-2035
11.3.3.5. Global Digital Twins Market for Other Applications, 2022-2035
11.3.4. Global Digital Twins Market: Analysis by End Users
11.3.4.1. Global Digital Twins Market for Pharmaceutical Companies, 2022-2035
11.3.4.2. Global Digital Twins Market for Medical Device Manufacturers, 2022-2035
11.3.4.3. Global Digital Twins Market for Healthcare Providers, 2022-2035
11.3.4.4. Global Digital Twins Market for Patients, 2022-2035
11.3.4.5. Global Digital Twins Market for Other End Users, 2022-2035
11.3.5. Global Digital Twins Market: Analysis by Geography
11.3.5.1. Digital Twins Market in North America, 2022-2035
11.3.5.2. Digital Twins Market in Europe, 2022-2035
11.3.5.3. Digital Twins Market in Asia, 2022-2035
11.3.5.4. Digital Twins Market in Latin America, 2022-2035
11.3.5.5. Digital Twins Market in Middle East and North Africa, 2022-2035
11.3.5.6. Digital Twins Market in Rest of the World, 2022-2035
12. CONCLUSION
13. EXECUTIVE INSIGHTS
13.1. Chapter Overview
13.2. Dassault Syst?mes
13.2.1. Company Snapshot
13.2.2. Interview Transcript: Barbara Holtz, Business Consultant
13.3. TwInsight
13.3.1. Company Snapshot
13.3.2. Interview Transcript: Marek Bucki, Co-Founder and Chief Scientific Officer
13.4. Unlearn.AI
13.4.1. Company Snapshot
13.4.2. Interview Transcript: Andrew Stelzer, Business Development Executive
13.5. Yokogawa Insilico Biotechnology
13.5.1. Company Snapshot
13.5.2. Interview Transcript: Klaus Mauch, Managing Director and Chief Executive Officer
14. APPENDIX I: TABULATED DATA
15. APPENDIX II: LIST OF COMPANIES AND ORGANIZATIONS