Table of Content


1. E/E Architecture and Cockpit-Driving Integration

1.1 Background of Cockpit-Driving Integration
1.2 E/E Architecture and Cockpit-Driving Integration
1.2.1 Cross-domain Integrated Architecture and Cockpit-Driving Integration
1.2.2 Zonal EEA and Cockpit-Driving Integration
1.3 Evolution of Cockpit-Driving Integration
1.3.1 Development Form of Driving-Parking Integration
1.3.2 Development and Exploration of Cockpit-Parking Integration
1.4 Key Technologies of Cockpit-Driving Integration
1.5 Cockpit-Driving Integrated Solutions and Planning of Major OEMs
1.6 Cockpit-Driving Integrated Products and Solutions of Major Tier1 Suppliers
1.7 Cockpit-Driving Integrated Products and Solutions of Chip and Software Companies


2. Cockpit-Driving Integrated Products and Solutions of OEMs

2.1 Tesla
2.1.1 E/E Architecture
2.1.2 Model 3 Architecture
2.1.3 Iteration of Intelligent Driving & Intelligent Cockpit System
2.1.4 Autopilot HW4
2.1.5 New-generation Models

2.2 Volkswagen
2.2.1 E/E Architecture Planning
2.2.2 Cooperation with Qualcomm

2.3 Geely
2.3.1 GEEA 3.0
2.3.2 SOA-based Operating System

2.4 GAC Aion
2.4.1 X-Soul Architecture
2.4.2 X-Soul Architecture Upgrade
2.4.3 Models Based on X-Soul Architecture

2.5 Great Wall Motor
2.5.1 Coffee Intelligence
2.5.2 E/E Architecture
2.5.3 GEEP 4.0
2.5.4 GEEP 5.0
2.5.5 Intelligent Driving Planning
2.5.6 Intelligent Cockpit Planning
2.5.7 Prediction on Cockpit-Driving Integration

2.6 Hongqi
2.6.1 FEEA
2.6.2 FMEs Intelligent Hyper Architecture
2.6.3 Cockpit-Driving Integrated Chips

2.7 Xpeng
2.7.1 E/E Architecture
2.7.2 E/E Architecture: SOA
2.7.3 E/E Architecture: Hardware and Software Integration
2.7.4 New-generation Cockpit System
2.7.5 New-generation Intelligent Driving System
2.7.6 Typical Model: G9

2.8 Li Auto
2.8.1 E/E Architecture Iteration
2.8.2 New-generation Architecture: Central Computing Platform
2.8.3 New-generation Architecture: Zonal Controllers
2.8.4 New-generation Architecture: Software Planning

2.9 NIO
2.9.1 E/E Architecture Iteration
2.9.2 Cooperation with KEBODA

2.10 Jidu Auto
2.10.1 Profile
2.10.2 Development History
2.10.3 Robot
2.10.4 Dynamics

2.11 Neta
2.11.1 New-generation E/E Architecture
2.11.2 Central Computing Platform

2.12 IM Motors
2.12.1 New-generation Intelligent Digital Architecture


3. Cockpit-Driving Integrated Products and Solutions of Major Tier1 Suppliers

3.1 Bosch
3.1.1 Profile of XC China
3.1.2 Development Route of Cockpit-Driving Integrated Products
3.1.3 New-generation Cockpit Domain Controllers
3.1.4 Cockpit-Driving Integrated Solutions
3.1.5 Design of Cockpit-Driving Integrated Solutions

3.2 Continental
3.2.1 HPC
3.2.2 Continental Automotive Edge (CAEdge) Framework

3.3 Aptiv
3.3.1 Full Stack Solutions
3.3.2 Smart Vehicle Architecture (SVA) Planning
3.3.3 Central Computing Platform of SVA

3.4 ZF
3.4.1 Profile
3.4.2 Pro AI

3.5 Desay SV
3.5.1 Profile
3.5.2 Autonomous Driving Domain Controllers
3.5.3 First-generation ICP Products

3.6 Hangsheng Electronics
3.6.1 Profile
3.6.2 Core Capabilities of New-generation Cockpit
3.6.3 Critical Design of New-generation Cockpit

3.7 UnlimitedAI
3.7.1 Product Series
3.7.2 "Wukong II"
3.7.3 "Wukong III"
3.7.4 Cooperation Mode

3.8 Technomous
3.8.1 Profile
3.8.2 Domain Controllers & Planning

3.9 Baidu
3.9.1 Cockpit-Driving Integration Layout
3.9.2 Cockpit-Driving Integration Planning

3.10 Huawei
3.10.1 Intelligent Vehicle Solutions
3.10.2 Intelligent Vehicle E/E Architecture
3.10.3 CCA + VehicleStack

3.11 Z-One
3.11.1 Profile
3.11.2 Full Stack Technology Solutions
3.11.3 Electronic Architecture
3.11.4 Intelligent Driving Computing Platform
3.11.5 Intelligent Cockpit Computing Platform
3.11.6 Cockpit-Driving Integrated Computing Platform
3.11.7 Software Platform
3.11.8 Intelligent Cloud Platform
3.11.9 Cockpit-Driving Integrated Digital Experience Products
3.11.10 Key Technologies and Cooperative Ecology
3.11.11 Application Cases
3.11.12 Dynamics

3.12 ECARX
3.12.1 Profile
3.12.2 Computing Platform
3.12.3 Cooperation with SiEngine Technology and FAW

3.13 Lenovo
3.13.1 Automotive Business Layout
3.13.2 Investment and Cooperation in Automotive Industry


4. Cockpit-Driving Integrated Products and Solutions of Chip and Software Enterprises

4.1 Qualcomm
4.1.1 Automotive Solutions
4.1.2 ADAS Chip Iteration
4.1.3 ADAS Chip Solutions
4.1.4 Cockpit Chip Iteration
4.1.5 Cockpit-Driving Integrated Chips
4.1.6 Dynamics in Cooperation

4.2 NVIDIA
4.2.1 Autonomous Driving Chip Iteration
4.2.2 Cockpit-Driving Integrated Chips

4.3 Horizon Robotics
4.3.1 Chips and Planning
4.3.2 Vehicle Intelligent Development Platform
4.3.3 Major Customers

4.4 SemiDrive
4.4.1 Profile
4.4.2 Central Computer Architecture
4.4.3 Chip Planning

4.5 Neusoft Reach
4.5.1 NeuSAR Platform
4.5.2 NeuSAR 4.0
4.5.3 NeuSAR “Software First” Development Model

4.6 Thundersoft
4.6.1 Cockpit-Driving Integration Planning
4.6.2 ThunderX (Subsidiary) and Main Products
4.6.3 Domain Controller Middleware of ThunderX

4.7 Enjoy Move Technology
4.7.1 Profile
4.7.2 EMOS Software Platform
4.7.3 XCG Gen1

4.8 ArcherMind
4.8.1 Profile
4.8.2 Cross-domain Fusion Vehicle Software Computing Platform
4.8.3 Fusion3.0 Software Platform
4.8.4 Software Technology


5. Trends of and Challenges for Cockpit-Driving Integration

5.1 What Problems Does Cockpit-Driving Integration Solve?
5.2 How to Realize Cockpit-Driving Integration?
5.3 Technical Challenges for Cockpit-Driving Integration
5.3.1 Hardware
5.3.2 Software
5.3.3 Communication
5.3.4 Security
5.4 Development Mode Challenges for Cockpit-Driving Integration
5.5 Organizational Structure Challenges for Cockpit-Driving Integration
5.6 What Is the Direction of Cockpit-Driving Integration Companies?