Table of Content


1 Policies, Regulations and Standards for L4 Autonomous Driving
1.1 Taxonomy and Standardization of L3/L4 Autonomous Driving
1.1.1 SAE Levels of Driving Automation (1)
1.1.2 SAE Levels of Driving Automation (2)
1.1.3 China’s Taxonomy of Driving Automation for Vehicles (GB/T 40429-2021) Has Been Implemented
1.1.4 China’s Taxonomy of Driving Automation for Vehicles: Technical Requirements (1)
1.1.5 China’s Taxonomy of Driving Automation for Vehicles: Technical Requirements (2)
1.1.6 China’s Taxonomy of Driving Automation for Vehicles: Definition of L3/L4
1.1.7 China’s Automotive Driving Automation Classification: The Chinese Standard Enhances L3 Safety Requirements
1.1.8 Global Autonomous Driving Standards Organizations
1.1.9 ISO TC22/SC33 WG9 - Test Scenarios of Automated Driving Systems Working Group
1.1.10 ISO TC22 ADAG Working Group
1.1.11 ISO TC22/SC32/WG8 Working Group
1.1.12 ISO WP29 United Nations World Forum for Harmonization of Vehicle Regulations
1.1.13 ISO’s First International Safety Standard for L4 Automated Driving Systems: ISO 22737
1.1.14 ISO 22737: L4 LSAD (Low Speed Automated Driving) System Architecture
1.2 Policies and Regulations for L3/L4 Autonomous Driving in China
1.2.1 L3/L4 Autonomous Driving Regulations in China: Summary
1.2.2 L3/L4 Autonomous Driving Regulations in China: Notice on Piloting the Entry and Road Travel of Intelligent Connected Vehicles (Draft for Comments) (1)
1.2.3 L3/L4 Autonomous Driving Regulations in China: Notice on Piloting the Entry and Road Travel of Intelligent Connected Vehicles (Draft for Comments) (2)
1.2.4 L3/L4 Autonomous Driving Regulations in China: Shenzhen Clarified the Identification of Responsibilities for L3 Autonomous Vehicle Accidents for the First Time
1.2.5 L3/L4 Autonomous Driving Regulations in China: Beijing Released the Administrative Rules for Intelligent Connected Autonomous Shuttles
1.2.6 L3/L4 Autonomous Driving Regulations in China: The Implementation Plan of Shanghai Municipality for Accelerating the Innovation-driven Development of Intelligent Connected Vehicles
1.3 Global Policies and Regulations for L3/L4 Autonomous Driving
1.3.1 The Global Autonomous Driving Industry Ushers in Substantial Policy Support
1.3.2 Global L3/L4 Autonomous Driving Regulations: Summary
1.3.3 Global L3/L4 Autonomous Driving Regulations: South Korea Announced "Mobility Innovation Roadmap"
1.3.4 Global L3/L4 Autonomous Driving Regulations: US NHTSA Announced the Occupant Protection Safety Standards for Vehicles Without Driving Controls
1.3.5 Global L3/L4 Autonomous Driving Regulations: The European Union Released the Type-approval Regulation for Highly Automated Vehicles
1.3.6 Global L3/L4 Autonomous Driving Regulations: Japan Proposed to Allow L4 Autonomous Vehicles to Travel on Roads


2 L4 Autonomous Driving Market Trends
2.1 L4 Autonomous Driving Market Size
2.1.1 Global L4 Autonomous Vehicle Market Size
2.1.2 China’s L4 Autonomous Passenger Car OEM Market Size
2.1.3 China’s Commercial L4 Autonomous Driving Market Size (OEM + AM)
2.2 Competitive Landscape of L4 Autonomous Driving
2.2.1 Major Players in Global L4 Autonomous Driving Market (1)
2.2.2 Major Players in Global L4 Autonomous Driving Market (2)


3 Application Sub-scenarios of L4 Autonomous Driving
3.1 Business Models
3.1.1 Limited Scenarios for Commercial Application of L4 Autonomous Driving
3.1.2 L4 Autonomous Driving SOP Timeline
3.1.3 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (1)
3.1.4 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (2)
3.1.5 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (3)
3.1.6 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (4)
3.1.7 Commercialization Models of L4 Suppliers (II): Dimension Reduction Application (1)
3.1.8 Commercialization Models of L4 Suppliers (II): Dimension Reduction Application (2)
3.2 L4 Application Scenarios - Robotaxi
3.2.1 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (1)
3.2.2 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (2)
3.2.3 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (3)
3.2.4 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (4)
3.2.5 Players in Robotaxi Market (II): Emerging Carmakers Enter the Market
3.2.6 Statistics of Foreign Robotaxi Operators
3.2.7 Statistics of Chinese Robotaxi Operators (1)
3.2.8 Statistics of Chinese Robotaxi Operators (2)
3.2.9 Robotaxi Comparison between Apollo Go, Pony.ai and SAIC Mobility (1)
3.2.10 Robotaxi Comparison between Apollo Go, Pony.ai and SAIC Mobility (2)
3.2.11 Robotaxi Comparison between Apollo Go, Pony.ai and SAIC Mobility (3)
3.2.12 Scale Development of Robotaxi in China
3.2.13 China’s Robotaxi Market Size
3.3 L4 Application Scenarios – Autonomous Shuttle
3.3.1 The Role of Autonomous Shuttles in City Operation
3.3.2 Low-speed Autonomous Shuttle Suppliers in China (1)
3.3.3 Low-speed Autonomous Shuttle Suppliers in China (2)
3.3.4 Autonomous Shuttle Market Size
3.3.5 Layout of Some Autonomous Shuttle Suppliers
3.4 L4 Application Scenarios - Autonomous Delivery
3.4.1 Autonomous Delivery Industry Chain
3.4.2 Commercial Operation of Autonomous Delivery Vehicles Deployed by Major Users (1)
3.4.3 Commercial Operation of Autonomous Delivery Vehicles Deployed by Major Users (2)
3.4.4 Major Users That Deploy Autonomous Delivery Vehicle Products: Meituan
3.4.5 Major Users That Deploy Autonomous Delivery Vehicle Products: JD
3.4.6 Major Users That Deploy Autonomous Delivery Vehicle Products: Haomo.ai
3.4.7 Major Users That Deploy Autonomous Delivery Vehicle Products: Neolix
3.4.8 Major Users That Deploy Autonomous Delivery Vehicle Products: White Rhino
3.4.9 China’s Outdoor Autonomous Delivery Vehicle Market Size
3.4.10 China’s Autonomous Delivery Market Pattern
3.4.11 Autonomous Delivery Business Models
3.5 L4 Application Scenarios - Autonomous Truck
3.5.1 Competitive Landscape of L3+/L4 Autonomous Truck System Suppliers
3.5.2 Technical Route for the Development of Autonomous Trucks
3.5.3 Operating Model of Autonomous Trucks: Mine Scenario
3.5.4 Players in Foreign Autonomous Truck Market
3.5.5 Players in China’s Autonomous Truck Market (I): Autonomous Heavy Truck Solution Providers
3.5.6 Players in China’s Autonomous Truck Market (II): Conventional Heavy Truck Companies
3.5.7 Comparison between Major L4 Autonomous Truck Suppliers
3.5.8 Autonomous Driving Cases in Closed Scenarios
3.5.9 Status Quo of Autonomous Truck Market Segments in China
3.5.10 China’s Autonomous Truck Market Size


4 Key Technologies for Mass Production of L4 Autonomous Driving
4.1 Key Technologies of L4 Autonomous Driving: Algorithm
4.1.1 Algorithm is the Support for L4 Autonomous Driving Technology (1)
4.1.2 Algorithm is the Support for L4 Autonomous Driving Technology (2)
4.1.3 L4 Autonomous Driving Algorithm Providers (1)
4.1.4 L4 Autonomous Driving Algorithm Providers (2)
4.1.5 L4 Autonomous Driving Algorithm Providers (3)
4.1.6 L4 Autonomous Driving Algorithm Providers (4)
4.1.7 L4 Autonomous Driving Algorithm Providers (5)
4.1.8 L4 Autonomous Driving Algorithm Providers (6)
4.1.9 Autonomous Driving Software Algorithm Cases (I)
4.1.10 Autonomous Driving Software Algorithm Cases (II)
4.1.11 Autonomous Driving Software Algorithm Cases (III)
4.2 Key Technologies of L4 Autonomous Driving: Data Closed Loop
4.2.1 The Importance of Data Closed Loop to L4 Autonomous Driving
4.2.2 Data Closed Loop Technology for Autonomous Driving (I)
4.2.3 Data Closed Loop Technology for Autonomous Driving (II)
4.2.4 Autonomous Driving Data Closed Loop Providers (2)
4.2.5 Autonomous Driving Data Closed Loop Providers (2)
4.2.6 Autonomous Driving Data Closed Loop Providers (3)
4.2.7 Autonomous Driving Data Closed Loop Cases (I)
4.2.8 Autonomous Driving Data Closed Loop Cases (II)
4.2.9 Autonomous Driving Data Closed Loop Cases (III)
4.2.10 Autonomous Driving Data Closed Loop Cases (IV)
4.2.11 Autonomous Driving Data Closed Loop Cases (V)
4.2.12 Autonomous Driving Data Closed Loop Cases (VI)
4.2.13 Autonomous Driving Data Closed Loop Cases (VII)
4.2.14 Autonomous Driving Data Closed Loop Cases (VIII)
4.2.15 Autonomous Driving Data Closed Loop Cases (IX)
4.3 Key Technologies of L4 Autonomous Driving: Vehicle-Road-Cloud Cooperation
4.3.1 Vehicle-Road-Cloud Cooperation Will Become One of the Mainstream Paths to High-Level Autonomous Driving
4.3.2 Ways How Vehicle-Road-Cloud Cooperation Enables Autonomous Driving
4.3.3 Vehicle-Road-Cloud Cooperation Solution Providers (1)
4.3.4 Vehicle-Road-Cloud Cooperation Solution Providers (2)
4.3.5 Vehicle-Road-Cloud Cooperation Solution Providers (3)
4.3.6 L4 Autonomous Driving Cases Based on Vehicle-Road-Cloud Cooperation (I): Nansha Smart Bus
4.3.7 L4 Autonomous Driving Cases Based on Vehicle-Road-Cloud Cooperation (II): Yangshan Port Autonomous Driving
4.4 Key Technologies of L4 Autonomous Driving: HD Map and Positioning
4.4.1 Requirements of L4 Autonomous Driving for HD Maps (1)
4.4.2 Requirements of L4 Autonomous Driving for HD Maps (2)
4.4.3 Requirements of L4 Autonomous Driving for High-precision Positioning Technology
4.4.4 Providers of HD Maps for L4 Autonomous Driving: Passenger Car (1)
4.4.5 Providers of HD Maps for L4 Autonomous Driving: Passenger Car (2)
4.4.6 Providers of HD Maps for L4 Autonomous Driving: Commercial Vehicle (1)
4.4.7 Providers of HD Maps for L4 Autonomous Driving: Commercial Vehicle (2)
4.4.8 Mass Production Cases of HD Map and Positioning for L4 Autonomous Driving (I)
4.4.9 Mass Production Cases of HD Map and Positioning for L4 Autonomous Driving (II)
4.5 Key Technologies of L4 Autonomous Driving: Redundancy
4.5.1 Suppliers of Autonomous Driving Redundant Systems: Brake Redundancy
4.5.2 Suppliers of Autonomous Driving Redundant Systems: Sensing Redundancy
4.5.3 Suppliers of Autonomous Driving Redundant Systems: Computing Redundancy
4.5.4 Autonomous Driving Redundancy Cases (I)
4.5.5 Autonomous Driving Redundancy Cases (II)
4.5.6 Autonomous Driving Redundancy Cases (III)
4.5.7 Autonomous Driving Redundant Solutions of Great Wall Motor (1)
4.5.8 Autonomous Driving Redundant Solutions of Great Wall Motor (2)


5 L3/L4 Autonomous Driving Solutions of OEMs
5.1 L3/L4 Autonomous Driving Layout of OEMs
5.1.1 L4 Autonomous Vehicle Products and Application Planning of Main OEMs
5.1.2 L3/L4 Autonomous Driving Planning and Layout of OEMs (1)
5.1.3 L3/L4 Autonomous Driving Planning and Layout of OEMs (2)
5.1.4 Comparison of L4 Autonomous Driving Solutions between OEMs (1)
5.1.5 Comparison of L4 Autonomous Driving Solutions between OEMs (2)
5.1.6 Typical L4 Solution Configurations of OEMs
5.2 Jidu Auto
5.2.1 L4 Autonomous Driving SOP Planning
5.2.2 L4 Autonomous Driving Technology
5.2.3 LiDAR-based Autonomous Driving Solution
5.3 Xpeng Motors
5.3.1 L4 Autonomous Driving Planning
5.3.2 Autonomous Driving System
5.3.3 Autonomous Driving Technologies (I): Perception
5.3.4 Autonomous Driving Technologies (II): Data Closed Loop
5.4 Great Wall Motor
5.4.1 Evolution of L3/L4 Autonomous Driving Solutions
5.4.2 Hpilot Autonomous Driving Product Roadmap of Great Wall Motor (Haomo.ai)
5.5 Tesla
5.5.1 New Autopilot Layout
5.5.2 FSD Beta v 10.69 System (1)
5.5.3 FSD Beta v 10.69 System (2)
5.6 Toyota
5.6.1 L4 Autonomous Driving Solutions (1)
5.6.2 L4 Autonomous Driving Solutions (2)
5.7 Volvo
5.7.1 L4 Autonomous Driving Solutions
5.7.2 L4 Autonomous Driving Technologies (1)
5.7.3 L4 Autonomous Driving Technologies (2)
5.8 Other Automakers
5.8.1 L4 Autonomous Driving Solution of Weltmeister
5.8.2 L4 Autonomous Driving Solution of Hongqi
5.8.3 L4 Autonomous Driving Solution of Yutong Bus


6 L4 Autonomous Driving Solutions of Tier 1 Suppliers and Startups
6.1 L4 Technology Development of Chinese and Foreign Suppliers
6.1.1 Chinese L4 Autonomous Driving Solutions for Passenger Cars (1)
6.1.2 Chinese L4 Autonomous Driving Solutions for Passenger Cars (2)
6.1.3 Chinese L4 Autonomous Driving Solutions for Passenger Cars (3)
6.1.4 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Pony.ai (1)
6.1.5 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Pony.ai (2)
6.1.6 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Baidu (1)
6.1.7 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Baidu (2)
6.1.8 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Baidu (3)
6.1.9 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Idriverplus
6.1.10 Chinese L4 Autonomous Driving Solutions for Passenger Cars: WeRide (1)
6.1.11 Chinese L4 Autonomous Driving Solutions for Passenger Cars WeRide (1)
6.1.12 Chinese L4 Autonomous Driving Solutions for Passenger Cars: AutoX
6.1.13 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Momenta
6.1.14 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Deeproute.ai
6.1.15 Foreign L4 Autonomous Driving Solutions for Passenger Cars
6.1.16 Foreign L4 Autonomous Driving Solutions for Passenger Cars: Waymo
6.1.17 Foreign L4 Autonomous Driving Solutions for Passenger Cars: Cruise
6.1.18 L4 Autonomous Driving Solutions of Major Technology Providers: Commercial Vehicle (1)
6.1.19 L4 Autonomous Driving Solutions of Major Technology Providers: Commercial Vehicle (2)
6.1.20 L4 Autonomous Driving Solutions of Major Technology Providers: Commercial Vehicle (3)
6.1.21 Main L4 Autonomous Driving Solutions for Commercial Vehicles: QCraft (1)
6.1.22 Main L4 Autonomous Driving Solutions for Commercial Vehicles: QCraft (2)
6.1.23 Main L4 Autonomous Driving Solutions for Commercial Vehicles: Inceptio Technology (1)
6.1.24 Main L4 Autonomous Driving Solutions for Commercial Vehicles: Inceptio Technology (2)
6.1.25 L4 Autonomous Driving Solutions of Major Technology Providers: Autonomous Delivery
6.2 Waymo
6.2.1 Profile
6.2.2 Layout of Autonomous Driving Business
6.2.3 L4 Autonomous Driving System: Waymo Driver
6.2.4 L4 Autonomous Driving Technologies (I): Perception
6.2.5 L4 Autonomous Driving Technologies (II): Architecture
6.2.6 L4 Autonomous Driving Technologies (III): Data Model and Architecture
6.2.7 L4 Autonomous Driving Technologies (IV): Simulation
6.2.8 L4 Autonomous Driving Technologies (V): Planning
6.2.9 L4 Autonomous Driving Technologies (VI): Computing Platform
6.2.10 L4 Products (I): Waymo One (1)
6.2.11 L4 Products (I): Waymo One (2)
6.2.12 L4 Products (II): Waymo Via
6.3 Cruise
6.3.1 Profile
6.3.2 Autonomous Vehicle: Hardware
6.3.3 Autonomous Vehicle: Software Algorithms and Chips (1)
6.3.4 Autonomous Vehicle: Software Algorithms and Chips (2)
6.3.5 Autonomous Driving Technologies (I)
6.3.6 Autonomous Driving Technologies (II)
6.3.7 Autonomous Driving Technologies (III)
6.3.8 L4 Products (I)
6.3.9 L4 Products (II)
6.3.10 L4 Products (III)
6.4 Aurora
6.4.1 Profile
6.4.2 Autonomous Driving System: Aurora Driver Platform (1)
6.4.3 Autonomous Driving System: Aurora Driver Platform (2)
6.4.4 Autonomous Driving Technology: Perception and Decision
6.4.5 Layout of L4 Autonomous Driving
6.5 Navya
6.5.1 Cooperated with Valeo to Deploy L4 Autonomous Driving
6.5.2 Autonomous Shuttle Business
6.6 Mobileye
6.6.1 L4 Autonomous Driving Service: Mobileye Drive
6.6.2 L4 Autonomous Driving Service: System Design Architecture of Mobileye Drive
6.6.3 Mobileye Plans to Enable the Popularization of Low-cost L4 Autonomous Driving by Independently Developing 4D Imaging Radars
6.6.4 Application Layout of L4 Autonomous Driving
6.7 Valeo
6.7.1 L3 and L3+ Autonomous Driving Solutions
6.7.2 Allocation of Safety Levels of Main ECU and Backup ECU in L3+ Autonomous Driving
6.8 Baidu Apollo
6.8.1 Autonomous Driving Layout
6.8.2 L4 Technologies (I): Security Redundancy
6.8.3 L4 Technologies (II): Computing Platform
6.8.4 L4 Autonomous Driving Systems (I): Apollo Air (1)
6.8.5 L4 Autonomous Driving Systems (I): Apollo Air (2)
6.8.6 L4 Autonomous Driving Systems (II): Apollo Lite
6.8.7 L4 Autonomous Driving Systems (III): Multi-sensor Fusion Autonomous Driving Solution
6.8.8 L3/L4 Synergy
6.8.9 L4 Products (I): Apollo Go (1)
6.8.10 L4 Products (I): Apollo Go (2)
6.8.11 L4 Products (I): Apollo Go (3)
6.8.12 L4 Products (I): Apollo Go (4)
6.8.13 L4 Products (I): Apollo Go (5)
6.8.14 L4 Products (I): Apollo Go (6)
6.8.15 L4 Products (II): 5G Cloud Valeting
6.8.16 L4 Products (III): Autonomous Truck
6.8.17 L4 Products (IV): Automated Valet Parking (AVP)
6.9 Pony.ai
6.9.1 Profile
6.9.2 Persist in Simultaneous R&D of Software and Hardware
6.9.3 Released the New-generation L4 Autonomous Driving System
6.9.4 L4 Autonomous Driving System: Hardware Architecture (1)
6.9.5 L4 Autonomous Driving System: Hardware Architecture (2)
6.9.6 L4 Autonomous Driving System: Computing Unit (1)
6.9.7 L4 Autonomous Driving System: Computing Unit (2)
6.9.8 L4 Autonomous Driving System: Computing Unit (3)
6.9.9 L4 Autonomous Driving System: Data Closed Loop Capability
6.9.10 Cooperation on Application of L4 Autonomous Driving System: SAIC AI LAB
6.9.11 Commercial Application Achievements of L4 Autonomous Driving (1)
6.9.12 Commercial Application Achievements of L4 Autonomous Driving (2)
6.9.13 Implemented Business Model of L4 Autonomous Driving
6.10 WeRide
6.10.1 Profile
6.10.2 Development History of Autonomous Driving Business
6.10.3 Autonomous Driving Platform
6.10.4 To Create A New-generation Autonomous Driving Platform
6.10.5 Core Technology of Autonomous Driving
6.10.6 Autonomous Driving Technologies (I): Data Closed Loop
6.10.7 Autonomous Driving Technologies (II): Redundancy
6.10.8 Autonomous Driving Technologies (III): Algorithm
6.10.9 L4 Products (I): Robotaxi (1)
6.10.10 L4 Products (I): Robotaxi (2)
6.10.11 L4 Products (I): Robotaxi (3)
6.10.12 L4 Products (II): Robobus
6.10.13 L4 Products (III): Robovan
6.10.14 L4 Products (IV): Robo Street Sweeper
6.11 AutoX
6.11.1 Profile
6.11.2 Autonomous Driving Capabilities
6.11.3 Autonomous Driving System: AutoX Gen5
6.11.4 Autonomous Driving Technology: Panoramic Fusion Perception System - xFusion
6.11.5 L4 Product: Robotaxi
6.12 Momenta
6.12.1 Profile
6.12.2 Autonomous Driving Technology Layout
6.12.3 Autonomous Driving Solutions
6.12.4 Autonomous Driving Solutions: Mpilot
6.12.5 Autonomous Driving Solutions: L4 Solution
6.12.6 Strategic Planning of L4 Autonomous Driving
6.12.7 L4 Product: Robotaxi
6.13 Deeproute.ai
6.13.1 Profile
6.13.2 L4 Autonomous Driving Solution
6.13.3 L4 Autonomous Driving Technologies: Multi-sensor Fusion
6.13.4 L4 Autonomous Driving Technologies: Self-developed Reasoning Engine
6.13.5 L4 Products (I): Robotaxi
6.13.6 L4 Products (II): Autonomous Container Truck
6.14 Huawei
6.14.1 Advanced Autonomous Driving System: ADS (1)
6.14.2 Advanced Autonomous Driving System: ADS (2)
6.14.3 L4 Autonomous Driving Technology: Computing Platform
6.15 Haomo.ai
6.15.1 Profile
6.15.2 Passenger Car Autonomous Driving System
6.15.3 Autonomous Vehicle Technologies (I): Data Closed Loop (1)
6.15.4 Autonomous Vehicle Technologies (I): Data Closed Loop (2)
6.15.5 Autonomous Vehicle Technologies (II): Algorithm
6.15.6 Autonomous Vehicle Technologies (III): Computing Platform
6.15.7 L3/L4 Autonomous Driving Planning
6.15.8 L4 Products (I): Autonomous Delivery Vehicle (1)
6.15.9 L4 Products (I): Autonomous Delivery Vehicle (2)
6.15.10 L3/L4 Products (II): Passenger Car
6.16 DeepBlue Technology
6.16.1 Main Products
6.16.2 L4 Product: Panda AI Bus (1)
6.16.3 L4 Product: Panda AI Bus (2)
6.17 Allride.ai
6.17.1 Profile
6.17.2 L4 Autonomous Driving System for Roadside Sensing Only
6.17.3 L4 Products (I): Robotaxi
6.17.4 L4 Products (II): Robobus
6.18 UISEE Technology
6.18.1 Profile
6.18.2 Main Autonomous Driving Products and Solutions
6.18.3 L4 Autonomous Driving Platform: U-Drive
6.18.4 L4 Products (I): Robotaxi
6.18.5 L4 Products (II): Autonomous Logistics
6.18.6 L4 Products (III): Autonomous Delivery (1)
6.18.7 L4 Products (III): Autonomous Delivery (2)
6.18.8 L4 Products (IV): Autonomous Minibus
6.19 Idriverplus
6.19.1 L4 Autonomous Driving Technologies
6.19.2 L4 Autonomous Driving Technology: Data Closed Loop
6.19.3 L4 Products (I): Robotaxi (1)
6.19.4 L4 Products (I): Robotaxi (2)
6.19.5 L4 Products (II): Robobus
6.20 QCraft
6.20.1 Development Strategy for L4 Autonomous Driving
6.20.2 4th-Generation L4 Autonomous Driving Mass Production Solution: DBQ V4
6.20.3 L4 Autonomous Driving Technology Layout
6.20.4 L4 Autonomous Driving Technologies (I): Algorithm (1)
6.20.5 L4 Autonomous Driving Technologies (I): Algorithm (2)
6.20.6 L4 Autonomous Driving Technologies (II): QCraft Matrix
6.20.7 L4 Autonomous Driving Technologies (III): Perception
6.20.8 L4 Products (I): Autonomous Commercial Vehicle
6.20.9 L4 Products (II): Robotaxi
6.21 TuSimple
6.21.1 Profile
6.21.2 Layout of L4 Autonomous Driving Business
6.21.3 Autonomous Driving Technology Providers
6.21.4 Completed Unmanned Tests of L4 Heavy Truck
6.21.5 Autonomous Driving Business Model
6.22 Plus.ai
6.22.1 L4 Autonomous Driving Layout
6.22.2 L4 Autonomous Driving Planning
6.22.3 L4 Autonomous Driving Demonstration
6.22.4 L4 Autonomous Driving System: PlusDrive
6.23 Inceptio Technology
6.23.1 Completed L4 Autonomous Heavy Truck Road Tests
6.23.2 Evolution of Autonomous Driving System
6.23.3 Self-developed Autonomous Driving Technologies (I): Regulation and Control Integration
6.23.4 Self-developed Autonomous Driving Technologies (II): Fuel-saving Algorithm
6.23.5 Self-developed Autonomous Driving Technologies (III): Data Closed Loop
6.24 CiDi
6.24.1 L4 Products (I): Autonomous Mining Truck
6.24.2 L4 Products (II): Non-cabin Autonomous Commercial Vehicle