Table of Content


1 Automated Parking Concept and Technologies

1.1 Concept and Definition of Automated Parking
1.1.1 Concepts of Automated Parking Assist (APA) and Automated Valet Parking (AVP)
1.1.2 Typical Architecture and Classification of AVP System
1.1.3 Bosch-defined Levels and Evolution of Automated Parking
1.1.4 ResearchInChina-defined Levels and Evolution of Automated Parking
1.1.5 Introduction to Parking Scenarios
1.1.6 Sensor Configurations of APA, RPA and AVP and Typical Application Scenarios
1.1.7 AVP Application Scenarios
1.1.8 AVP Standards and Regulations
1.2 Composition and Technologies of Automated Parking System
1.2.1 Composition of Automated Parking System
1.2.2 Schematic Diagram of Automated Parking System
1.2.3 Comparison of Three AVP Technology Roadmaps
1.2.4 Comparison of Solutions between Major AVP Providers
1.2.5 Comparison of Degree of Parking Intelligence between Some Mass-produced Models
1.3 Development Trends of AVP System
1.3.1 Development Trends of AVP
1.3.2 Dynamics of Major Suppliers in APA/AVP in 2020
1.3.3 Intelligent Parking Deployments of OEMs, 2020-2021
1.3.4 Japan’s Progress in AVP Application


2 Automated Parking Market

2.1 AVP Market Size
2.2 Installations and Installation Rate of APA, 2019-2020
2.3 Monthly Installations of APA and YoY Growth, 2019-2020
2.4 Monthly Installation Rate of APA and YoY Growth, 2019-2020
2.5 Installations and Installation Rate of APA by Price, 2019-2020
2.6 Installations and Installation Rate of APA by Country, 2019-2020
2.7 Installation Rate of APA by Price Range, 2019-2020
2.8 TOP15 Brands by Installations of APA, 2019-2020
2.9 TOP15 Models by Installations of APA, 2019-2020
2.10 Ranking of APA-enabled Models by Brand/Model, 2020
2.11 APA-enabled Models as a Percentage of Total Vehicle Sales, 2019-2020
2.12 Installation Rates of APA & AVP in China, 2014-2024E


3 APS/AVP Technology Providers

3.1 Valeo
3.1.1 Parking Business
3.1.2 Evolution of Parking Technology
3.1.3 Automated Parking Development Roadmap
3.1.4 Park4U and Cyber Valet Services
3.1.5 New-generation Park4U? Charge Automated Parking System
3.1.6 Layout of Automated Parking in China

3.2 Bosch
3.2.1 ADAS/Parking Product Layout
3.2.2 Automated Parking Planning
3.2.3 Automated Parking Technology Roadmap
3.2.4 Automated Parking Business Model
3.2.5 L2 Automated Parking Technology and Supported Models
3.2.6 AVP System Architecture, AVP Safety and Security Concepts
3.2.7 AVP Solution Cooperated with Daimler
3.2.8 AVP Solution Cooperated with Ford
3.2.9 AVP Partners
3.2.10 AVP Customers

3.3 Hyundai Mobis
3.3.1 AVPS
3.3.2 AVP and Wireless Charging

3.4 ZongMu Technology
3.4.1 Profile
3.4.2 Automated Parking Development Roadmap
3.4.3 Automated Parking Technology Roadmap
3.4.4 Automated Parking Business Model
3.4.5 AVP/HPP System Architecture
3.4.6 Evolution of Automated Parking System
3.4.7 Features of Second-generation Automated Parking System
3.4.8 L3 Parking Platform
3.4.9 L4 Automated Parking System Services and Products
3.4.10 Partners
3.4.11 Customers

3.5 Uisee Technology
3.5.1 Profile
3.5.2 Automated Parking Technology Roadmap and Progress
3.5.3 Application of AVP Technology
3.5.4 Partners

3.6 Baidu
3.6.1 Apollo AVP
3.6.2 Automated Parking Development Roadmap
3.6.3 Automated Parking Technology Roadmap
3.6.4 Core of Automated Parking Technology
3.6.5 Features of Automated Parking Technology
3.6.6 Automated Parking Safety Framework and Partners
3.6.7 Cooperated with Weltmeister on Implementation of Automated Parking Technology
3.6.8 Baidu Cloud AVP Cloud Automated Parking System

3.7 Holomatic
3.7.1 Profile
3.7.2 Features of HoloParking
3.7.3 Automated Parking Business Model and Technology Roadmap
3.7.4 Dynamics

3.8 Intesight
3.8.1 Profile
3.8.2 Parking System Development Plan
3.8.3 Fully Automated Parking System
3.8.4 AVP System

3.9 Momenta
3.9.1 Profile
3.9.2 Autonomous Driving Priority Scenarios and Technology Roadmap
3.9.3 Mpilot Parking Automated Parking Technology Roadmap
3.9.4 Mpilot Parking Automated Parking Solution Sensor Configuration
3.9.5 Mpilot Parking Intelligent Parking Development Roadmap

3.10 SKunchen Technology
3.10.1 Profile
3.10.2 Autonomous Driving Location Product Roadmap
3.10.3 UWB–based AVP Application Solutions
3.10.4 Automated Parking Business Model
3.10.5 AVP Cooperation Projects

3.11 ForVision Intelligent Technology

3.12 Motovis
3.12.1 Profile
3.12.2 Automated Parking Technology Roadmap
3.12.3 V-SLAM-based Automated Parking Technology
3.12.4 APA and AVP Solutions
3.12.5 Remote Automated Parking Technology
3.12.6 Latest Cooperation Dynamics in Automated Parking

3.13 Nullmax
3.13.1 Profile
3.13.2 Automated Parking Technology Roadmap
3.13.3 Features of Automated Parking Solution
3.13.4 Strategic Cooperation

3.14 SPACE
3.14.1 Profile
3.14.2 Vehicle-Parking Lot-Cloud Cooperation AVP Module Architecture and Development Plan
3.14.3 Evolution of AVP for Low-speed Autonomous Driving System
3.14.4 Cross-border Strategic Cooperation in Automated Parking

3.15 TJD Parking
3.15.1 Profile
3.15.2 Build a New Internet Intelligent Parking Ecosystem
3.15.3 Deployments in Automated Parking

3.16 Desay SV
3.16.1 Deployments in Automated Parking
3.16.2 Parking Intelligence Plan

3.17 Idriverplus
3.17.1 Profile
3.17.2 Enhanced Vision Labeled AVP System Solution
3.17.3 AVP Solution
3.17.4 Advantages of Enhanced Vision Labeled AVP System Solution

3.18 CalmCar
3.18.1 Profile
3.18.2 Automated Parking Solution
3.18.2 Parking Lot AVP Solution

3.19 DJI Automotive
3.19.1 Profile
3.19.2 Parking System Application Scenarios
3.19.3 Comparison of DJI Intelligent Parking Solutions
3.19.4 DJI Intelligent Parking System Configurations

3.20 Huawei
3.20.1 Development History and Technology Roadmap of Automated Parking Project
3.20.2 Follow-up Plan for Automated Parking Project
3.20.3 AVP Intelligent Parking Solution
3.20.4 Development Roadmap of AVP

3.21 ZF
3.21.1 Development History of Automated Parking
3.21.2 Automated Parking Technology Roadmap

3.22 ihorseai

4 Application Status and Trends of APA/AVP of OEMs

4.1 Volkswagen
4.1.1 Evolution of Intelligent Parking
4.1.2 Automated Parking Test and Parking Supporting Services
4.1.3 Automated Parking for VW Touareg Autonomous Driving

4.2 Tesla
4.2.1 Tesla MODEL 3 Automated Parking Function
4.2.2 Tesla MODEL Y Automated Parking Function
4.2.3 Tesla Smart Summon

4.3 Changan Automobile
4.3.1 Deployments in Parking
4.3.2 Development Plan for Automated Parking Technology
4.3.3 Evolution of Intelligent Parking Technology
4.3.4 Features of APA6.0 Intelligent Remote Parking Technology

4.4 Geely
4.4.1 Automated Parking Technology Roadmap
4.4.2 Evolution of Intelligent Parking Technology
4.4.3 Features of Intelligent Parking System
4.4.4 "Creeper" Intelligent Parking System
4.4.5 Automated Parking Operation Mode
4.4.6 Introducing Automated Parking + Automatic Charging Technology
4.4.7 Geely Xingyue L 5G-AVP System
4.4.8 Geely 5G-AVP 1km Automated Parking Technology

4.5 Xiaopeng Motors
4.5.1 Automated Parking Technology Roadmap
4.5.2 Evolution of Intelligent Parking Technology
4.5.3 Xpeng G3 All-Scenario Automated Parking
4.5.4 Xpeng P7 Mobile Parking Assist
4.5.5 Xpeng P5 Parking Lot Memory Parking

4.6 SAIC
4.6.1 Evolution of SAIC Roewe Intelligent Parking Technology
4.6.2 SAIC Roewe MARVEL X Last-mile Automated Parking System
4.6.3 SAIC Roewe MARVEL X AI Self-learning Parking
4.6.4 SAIC Roewe MARVEL R Integrated Fully Automated Parking
4.6.5 SAIC-GM-Wuling Promotes the "Automated Parking + Shared Mobility" Operation Model

4.7 Chery
4.7.1 Progress in APA/AVP
4.7.2 Chery EXEED APA
4.7.3 Features of Chery EXEED APA
4.7.4 Precautions for Chery EXEED APA

4.8 GAC
4.8.1 Automated Parking Development Plan
4.8.2 Evolution of GAC AION Intelligent Parking Technology
4.8.3 Features of GAC AION V Intelligent Remote Parking

4.9 Weltmeister
4.9.1 Evolution of Intelligent Automated Parking
4.9.2 Weltmeister W6 AVP
4.9.3 Application Scenarios of Weltmeister W6 Cloud AVP