Table of Content


Table of Contents

CONTENTS

RADIOISOTOPE POWER SYSTEMS

  • Introduction
  • RPS and Space Missions
  • NASA Mission Portfolio and Classes
  • Mission Types
  • Flagship Missions
  • New Frontiers Missions
  • Discovery Missions
  • NASA RPS Program
  • Program Content and Structure
  • Acquiring Flight Systems
  • DOE's Role
  • Pu-238 Supply Project
  • Constant Rate Production Strategy
  • RPS Production and DOE Laboratories
  • ORNL
  • LANL
  • INL
  • RPS Production Funding
  • New Technology Investments
  • NASA RPS Selection Process
  • Operational Considerations
  • Costs and RPS Demand
  • Flagship-Class Missions
  • Discovery-Class Missions
  • DOE's Production Capability
  • Technological Advances and Pu-238 Demand
  • ASRG
  • Dynamic RPS Funding
  • Thermoelectrics
  • Skutterudite
  • eMMRTG
  • Modular RPS
  • Solar Technology
  • Demand from Other Users
  • Reestablishing Pu-238 Production Challenges
  • Long Road to Shortage
  • Synthesizing PU-238
  • Plutonium Production Problems
  • Automating Pu-238 Production
  • Neptunium
  • LANL Production Equipment
  • Testing and Fabricating at INL
  • Production Challenges
  • Chemical Processing
  • Staffing Issues
  • Reactor Positions for Target Irradiation
  • Competition from Other Users
  • Outlook

NEXT GENERATION RADIOISOTOPE THERMOELECTRIC GENERATORS

  • Background
  • Radioisotope Power Systems
  • RPS Product Families
  • Current System
  • System in Development
  • Other Potential Future Systems
  • Radioisotope Thermoelectric Generators
  • Multi-Mission Radioisotope Thermoelectric Generator
  • GPHS Assembly
  • Converter Assembly
  • Converter Housing
  • System Considerations
  • Fuel
  • TRL
  • MMRTG F2, F3, F4-6
  • Enhanced MMRTG
  • eMMRTG Conceptual Design
  • GPHS Assembly
  • Converter Assembly
  • Converter Housing
  • System Considerations
  • Nominal Operations
  • Thermal Compliance
  • Mechanical Compliance
  • Fault Protection
  • Schedule
  • Possible Future RPS

PLUTONIUM-238

  • Background
  • NASA Roles and Responsibilities
  • NASA and DOE Agreements
  • RPS Nuclear Safety
  • Savannah River Plant
  • Re-Establishing Production
  • Critical Supply
  • Radioisotope Power System Production
  • PU-238 Synthesis
  • Plutonium-238 Production
  • Process Scale-Up
  • Future Pu-238 Production
  • Potential Production Problems
  • Automating Pu-238 Production
  • Neptunium
  • LANL Production Equipment
  • INL Testing and Fabricating
  • Chemical Processing
  • Staffing Issues
  • Reactor Positions
  • Other Users
  • Target Design and Qualification
  • NASA Priorities
  • Impact of New Technologies

DYNAMIC POWER CONVERSION

  • Background
  • Thermal Energy Conversion Branch
  • Dynamic Power Convertors
  • Advantages of Dynamic Power Conversion
  • ASRG Cancellation
  • Conversion Efficiency
  • Atmospheric Compositions
  • Temperature Limits
  • Vibrations
  • Robustness
  • RFPs
  • American Superconductor
  • Creare LLC
  • Northrop Grumman
  • Sunpower Inc.
  • Path to Flight
  • Reliability Analyses
  • Validation


FIGURES

  • 1. Expanded View of the Multi-Mission Radioisotope Thermoelectric Generator
  • 2. NASA RPS Mission History
  • 3. Plutonium-238 Supply Project-Radioisotope Power System Production Process Flowchart
  • 4. RPS Heat Source Supply and Mission Demand Balance Using CRP: 2014-2035
  • 5. RPS Pu-238 Fuel Clads
  • 6. Multi-Mission Radioisotope Thermoelectric Generator for the Curiosity Rover at Kennedy Space Center
  • 7. Power Source Selection in NASA's Lifecycle Review Process
  • 8. RPS Technology to System Roadmap
  • 9. RPS Decadal Planning Information Specifications
  • 10. Department of Energy and National Aeronautics and Space Administration Radioisotope Power Systems and Plutonium-238 Production Activities: 2011-2030
  • 11. Schematic Diagram of a Single RTG Thermocouple Connected to an Electric Load
  • 12. General Purpose Heat Source Module Parts
  • 13. MMRTG Configuration
  • 14. MMRTG F2
  • 15. eMMRTG Configuration Concept
  • 16. U.S. Department of Energy Plutonium-238 Supply Project
  • 17. Key Steps in Radioisotope Power System Production
  • 18. Plutonium-238 Synthesis
  • 19. Plutonium-238 Production
  • 20. Plutonium-238 Flowsheet
  • 21. Plutonium-238 Proposed Technology Comparison to Existing Processes and Areas Requiring Validation and Scale-Up
  • 22. Department of Energy and National Aeronautics and Space Administration Radioisotope Power Systems and Plutonium-238 Production Activities: 2011-2030
  • 23. New INL Neptunium Oxide Repackaging Glovebox
  • 24. Advanced Test Reactor and the High Flux Isotope Reactor to Produce Plutonium-238
  • 25. HFIR Irradiation Sites
  • 26. Design and Irradiation Focused on Development of Full Length Neptunium Target
  • 27. Examples of Stirling Convertor Development for Radioisotope Power Systems
  • 28. Flexure Isotope Stirling Convertor
  • 29. Turbo-Brayton Convertor and Generator
  • 30. Thermoacoustic Power Convertor and Generator
  • 31. Robust Stirling Convertor Generator
  • 32. ATR vs. Commercial Pressurized Water Reactor
  • 33. Cross-Section of the ATR
  • 34. DOE RPS Supply Chain
  • 35. 238PuO2 Pellet Glowing from Its Own Heat
  • 36. Model GPHS Module
  • 37. GPHS Fueled Clad
  • 38. Light Weight Radioisotope Heater Unit
  • 39. General Purpose Heat Source Module Assembly
  • 40. NASA Centers and Facilities
  • 41. NASA Four Major Themes
  • 42. NASA 2018 Strategic Plan Framework
  • 43. MMRTG Undergoing Acceptance Testing
  • 44. 238PU Process Diagram
  • 45. ASRG Backup Cooling Concept
  • 46. Stirling Convertor
  • 47. Stirling Hot End, VCHP Annulus and Heater Cylinder
  • 48. VCHP Installed
  • 49. VCHP Layout
  • 50. VCHP and Heat Cycling
  • 51. Mars 2020 Rover MMRTG
  • 52. Mars 2020 Rover Belly
  • 53. Mars 2020 Rover Belly
  • 54. LMT Advanced Stirling Radioisotope Generator
  • 55. Thermionic Converter
  • 56. Mars 2020 Rover MMRTG

TABLES

  • 1. NASA RPS Missions: 1969-2011
  • 2. Radioisotope Power System Funds by DOE and NASA and Program ($ Thousand): 2011-2020
  • 3. U.S. Plutonium-238 Production (Grams, $ Million): 2019-2024
  • 4. Decadal Survey Recommended Missions and Power Sources: 2013-2022
  • 5. Current and Potential Radioisotope Power Systems for Space Exploration
  • 6. MMRTG Performance Characteristics
  • 7. Nominal MMRTG Operating Characteristics
  • 8. Projected eMMRTG Performance Characteristics
  • 9. Nominal eMMRTG Operating Characteristics
  • 10. eMMRTG Project Schedule
  • 11. Possible Future RPS
  • 12. Dynamic Power Converter Performance Goals for Radioisotope Power Systems and Planetary Science
  • 13. Dynamic Power Converter Design Summary by Company
  • 14. Idaho National Lab Core Capabilities
  • 15. Idaho National Lab Budget by Programs and Elements: 2018-2020
  • 16. Los Alamos National Laboratory Budget by Programs and Elements: 2018-2020
  • 17. NASA Appropriations by Program: 2014-2019
  • 18. NASA Appropriations and Authorizations by Program: FY2019
  • 19. NASA Appropriations: 2020
  • 20. NASA Budget Requests: 2021-2024
  • 21. NASA Planetary Science Budget ($ Million): 2018-2024
  • 22. NASA Radioisotope Power Systems Budget ($ Million): 2018-2024
  • 23. NASA RPS Program Elements and Providers
  • 24. ORNL Radiochemical Engineering Development Center
  • 25. Oak Ridge National Laboratory Budget by Programs and Elements: 2018-2020