Table of Content


1. Overview of Automotive Processors (Computing Chip)
1.1 Automotive Semiconductor Market
1.1.1 Automotive Semiconductor Market Share
1.1.2 Demand of L2-L4 Autonomous Vehicle for Automotive Semiconductors
1.1.3 Demand of Autonomous Vehicle for Different Sensors (L2-L5)
1.2 Classification of Automotive Semiconductors
1.3 Classification of Automotive Computing Chips
1.4 GPU
1.5 FPGA
1.6 ASIC
1.7 Comparison between Typical Autonomous Driving Computing Chips
1.8 Different Processors Used in Different Links of Autonomous Driving
1.9 Typical Automotive Processor Companies


2. Cockpit Processors and Trends
2.1 Cockpit Electronic System
2.2 Overview of Cockpit Processors
2.3 Renesas Cockpit Processor
2.4 MBUX and Processors
2.5 Intel Cockpit Processor
2.6 Qualcomm Cockpit Processor
2.7 Nvidia Cockpit Processor


3. ADAS/AD Processors and Trends
3.1 ADAS and Autonomous Driving Processors
3.2 3D Bounding Box
3.3 Stereo Camera and DSP
3.4 NVIDIA and Competitors
3.5 ARM A76AE
3.6 MIPS I6500-F
3.7 Xavier
3.8 R-CAR V3H
3.9 Requirements on Computing Power of Autonomous Driving Processors


4. Global Automotive Processor Manufacturers
4.1 NXP
4.1.1 Profile
4.1.2 Processor and Microcontroller Portfolios
4.1.3 i.MX Processor Technology Roadmap
4.1.4 i.MX Processors Applied to Cockpits
4.1.5 S32 Series Processors
4.1.6 Autonomous Driving Computing Platform: Bluebox
4.1.7 Bluebox System Architecture
4.1.8 Collaboration between NXP and Kalray
4.1.9 Autonomous Driving Development Trends
4.2 Intel/Mobileye
4.2.1 Profile
4.2.2 Intel Go
4.2.3 Intel Go Users
4.2.4 Mobileye’s EyeQx Product Line
4.2.5 EyeQ Chip Users and Shipments
4.2.6 Mobileye EyeQ5 Chips
4.2.7 EyeQx Product Line Integrates with the Intel System
4.3 TI
4.3.1 Profile
4.3.2 ADAS Layout
4.3.3 ADAS Chip: TDAx SoCs
4.3.4 ADAS Chip and Deep Learning
4.3.5 TDAx Development Roadmap
4.3.6 DRAx
4.4 Infineon
4.4.1 Profile
4.4.2 Automotive Semiconductor Revenue and Growth Rate
4.4.3 Status in Automotive Semiconductor Segments
4.4.4 Infineon AURIX Series Processors
4.4.5 AURIX and Other Autonomous Driving Computing Platforms
4.4.6 Future Layout in Autonomous Driving
4.5 Qualcomm
4.5.1 Profile
4.5.2 820A and 602A
4.5.3 820A Artificial Intelligence
4.5.4 855A
4.5.5 Automotive Communication System
4.6 Nvidia
4.6.1 Profile
4.6.2 Parameter Comparison between DRIVE Series Products
4.6.3 Parker
4.6.4 AGX Xavier
4.6.5 AGX Pegasus
4.6.6 Xavier for Driverless Delivery
4.6.7 DRIVE AutoPilot
4.6.8 Models with DRIVE Series Chips
4.6.9 Partners in Autonomous Driving
4.7 Renesas
4.7.1 Profile
4.7.2 MCU & SoC
4.7.3 Autonomous Driving Layout
4.7.4 Chip Comparison between Renesas and Its Competitors
4.7.5 Next-generation Autonomous Driving SoC
4.7.6 Autonomous Driving Partners and Ecosystem
4.7.7 Autonomy Platform
4.7.8 Application of Chips in Autonomous Driving
4.7.9 Automotive Chip Cooperation
4.8 STMicroelectronics
4.8.1 Profile
4.8.2 ADAS Solutions
4.8.3 Automotive Processor Layout
4.8.4 Secure Real-Time Microcontrollers
4.8.5 Autonomous Driving Chip Roadmap
4.9 ARM
4.9.1 Profile
4.9.2 Processors
4.9.3 Processors Applied in Automobiles
4.9.3 SoC Applied in Automobiles
4.9.4 Product Roadmap
4.9.5 Autonomous Driving Technology Planning
4.9.6 Cortex-A76AE
4.9.7 Cortex-A65AE
4.9.8 Safety Ready Plan
4.9.9 Dynamics in Autonomous Driving
4.9.10 Autonomous Driving Ecosystem
4.10 Xilinx
4.10.1 Profile
4.10.1 Soc+FPGA Series Products
4.10.2 Scalable Product Series
4.10.3 Models Applied and Partners
4.10.4 ADAS/Autonomous Driving Market
4.10.5 Versal ACAP Series
4.10.6 RFSoC Development Roadmap
4.10.7 Zynq UltraScale+ MPSoC
4.10.8 Chips Applied in Automobiles
4.11 Fujitsu
4.11.1 ADAS Solutions
4.11.2 Agency of Miranda
4.12 Toshiba
4.12.1 Profile
4.12.2 ADAS Solutions
4.12.3 Automotive Image Recognition Processors
4.13 Ambarella
4.13.1 Profile
4.13.2 Automotive Vision Chips
4.13.3 Development with Hella Aglaia


5. Chinese Automotive Processor Companies
5.1 Horizon Robotics
5.1.1 Profile
5.1.2 Chip Ecosystem Planning
5.1.3 Autonomous Driving Chip Roadmap
5.1.4 Autonomous Driving Processors Solutions
5.1.5 Matrix Autonomous Driving Computing Platform
5.1.6 Second-generation BPU Chip
5.2 AutoChips (NavInfo)
5.2.1 Profile
5.2.2 Automotive Chip Product Line
5.2.3 Mass-production of Automotive MCU Chips
5.3 Cambricon
5.3.1 Profile
5.3.2 1A and 1H8
5.3.3 Autonomous Driving Chip
5.3.4 Business Model
5.4 SGKS
5.4.1 Profile
5.4.2 ADAS Chip
5.4.3 ADAS Chip Architecture and Parameters
5.4.4 ADAS Chip Algorithm Engine and Supported Algorithms
5.5 Allwinner Technology
5.5.1 Profile
5.5.2 Automotive Chips
5.5.3 Cooperative Development of Chips
5.6 Huawei
5.6.1 Two AI Chips for Autonomous Driving
5.6.2 Ascend 310: Efficient-computing and Low-power AI SoC
5.6.3 Ascend 310 for Autonomous Driving
5.6.4 Balong 5000
5.7 MediaTek
5.7.1 Automotive Chip Brand
5.7.2 Autus R10
5.8 DeePhi


6. Independent Developers of Automotive Processor
6.1 Tesla
6.1.1 Autopilot System and Processor Evolution
6.1.2 Independent Research Progress in Autonomous Driving Processors
6.2 Google
6.2.1 Waymo
6.2.2 Waymo Computing Platform Architecture
6.2.3 TPUChip
6.3 Baidu
AI Chip "Kunlun"
6.4 Leapmotor / Dahua Technology
Leapmotor Teams up with Dahua Technology to Develop AI Autonomous Driving Chip
6.5 Fabu
6.5.1 Profile
6.5.2 Core AI Chip Technology
6.5.3 Perception Chip
6.6 Westwell
6.6.1 Profile
6.6.2 Core AI Chip Technology