Description

The rising population along with the rapid expansion of anthropogenic activities has infused concerns associated with the sustainability and optimization of natural resources worldwide. Perpetual increase in per capita energy consumption in conjunction with aging energy infrastructure has further added to the debate concerning the growth and future roadmap for energy companies and utilities. Moreover, stringent emission mandates in compliance with the 2015 Paris agreement coupled with increasing economic and technological competence from renewable energy systems have led to a paradigm shift from the conventional centralized grid mechanism towards a distributed and energy-efficient technological evolution. Change in electricity consumption, competence among emerging energy generation technologies, and regulatory implementations have compelled industry participants to adopt and implement technologies that ensure reliability and uninterrupted power supply. Besides, the rise in electric faults, blackouts and load shedding has further raised questions regarding energy security across the globe. Henceforth, regulators and technology developers across the power industry have proposed ways to tackle circuitry failures on a larger scale through the introduction of micro-grids, decentralized generation systems and on-site renewable energy systems. The research study concentrated across technologies that address the basic challenges concerning energy trilemma (namely energy security, environmental sustainability, and energy equity) pertaining throughout the global power industry. Moreover, the study encompasses through recent developments, technology readiness levels, regulatory initiatives and various technology performance indicators ensuring a long-term, secure, and uninterrupted energy ecosystem.