Market Overview
The global agriculture technology-as-a-service market is projected to grow from $1,101.6 million in 2020 to $3,089.8 million by 2025, at a CAGR of 22.91% from 2020 to 2025. High growth in the market is expected to be driven by the growing need to adopt agriculture technologies across the industry, conversion of capital expenditure into operational expenditure for customers, and greater customer retention for service providers. The added benefits of lower costs, scalability, integration, and accessibility associated with ATaaS are also expected to be responsible for the reported growth of the business model.

Agriculture is the source of livelihood and sustenance of the economy in several regions of the world. Hence, the need to adopt advanced technologies in the agriculture industry has driven favorable initiatives, policies, and support shown by governments in countries such as the U.S., Canada, the U.K., Germany, France, Australia, India, and China. In emerging countries, the growth of the market is expected to be driven by rising awareness among governments and manufacturers-turned-service providers about the need to elevate farm produce while evaluating the farm expenditure of their growers. Furthermore, rising concerns over global food security and sustainability have led to extensive investments by governments across the world.

Competitive Landscape
The competitive landscape for the global agriculture technology-as-a-service market demonstrates an inclination toward companies adopting strategies such as product launch and development and partnerships, collaborations, and joint ventures. The major established players in the market are focusing on product launches and developments to introduce new technologies or developing further on the existing service portfolio. Deere and Co., Trimble Inc., AGCO Corporation, 365FarmNet, Agrivi, PrecisionHawk., Accenture plc, SGS SA, Intertek plc, Small Robot Company, Ceres Imaging Inc., Naio Technologies, and Airbus S.A.S among others, are some of the prominent players in the global agriculture technology-as-a-service market. The market is highly fragmented with the presence of a large number of small- to medium-sized companies that compete with each other and the large enterprises.

Regional Market Dynamics
North America is expected to generate the largest market share of the region during the forecast period due to the increased application of automation and control systems in most of the countries and the rising adoption rate of smart farming practices leading to increased adoption of agriculture technology-as-a-service. Constantly increasing farm sizes and the rise in global food demand from limited arable land shall ensure future market growth.

Asia-Pacific and Japan, in 2020, are expected to hold a smaller market share as compared to that of North America and Europe due to a late introduction of agriculture technologies and practices. However, Asia-Pacific and Japan are expected to have the fastest market growth with a CAGR of 28.20% during 2020 to 2025, owing to the amount of arable land available, dependence of agriculture on the countries for their economic and social growth along with the support by the government in terms of subsidy, regulations, or research. Smaller farm size in the larger part of the region is also expected to be a major driving force for exceeding the wide adoption of agriculture technology-as-a-service.

Market Report Coverage - Agriculture Technology-as-a-Service

Market Segmentation

  • Service Type- Software-as-a-Service, Equipment-as-a-Service
  • Technology- Data Analytics and Intelligence, Guidance Technology, Sensing Technology, and Variable Rate Application Technology, and Others
  • Applications- Yield Mapping and Monitoring, Soil Management, Crop Health Management, Navigation and Positioning, and Others
  • Farm Produce- Cereals, Fiber Crops, Oil Crops, Pulses, Vegetables, Fruits, Roots and Tubers, and Tree Nuts
  • Region – North America, South America, Europe, U.K., China, Asia-Pacific and Japan, and Middle East and Africa

Regional Segmentation

  • North America – U.S., Canada, and Mexico
  • South America – Brazil, Argentina, and Rest-of-South America
  • Europe – Germany, France, Italy, and Rest-of-Europe
  • U.K.
  • China
  • Asia-Pacific and Japan – Australia, Japan, India, and Rest-of-Asia-Pacific and Japan
  • Middle East and Africa – Israel, Saudi Arabia, South Africa

Business Drivers

  • Increasing Demand for Global Food Production
  • Economic Need for Precision Agriculture
  • Low Capital Investment for Customers

Business Challenges

  • Price Inflation of Agricultural Produce
  • Lack of Technical Awareness Amongst Farmers

Business Opportunities

  • Growth of Agriculture Service Economy
  • Increasing Investments for Agriculture Technology
  • Rising Trend of Farming-as-a-Service in India

Key Agriculture Technology-as-a-Service Companies Profiled
AGCO Corporation, CLAAS Group, CNH Industrial N.V., Deere & Company, Kubota Corporation, Yanmar Co. Ltd., 365FarmNet GmbH, Agrivi, CropIn Technology Solutions Pvt. Ltd., Fujitsu Limited, IBM Corporation, Microsoft Corporation, Robert Bosch GmbH, Trimble Inc., Parrot SA, Pixhawk, Precision Hawk Inc., SZ DJI Technology Co. Ltd., Harvest Automation Inc., Naio Technologies, Small Robot Company, Syngenta AG, Accenture plc, Airbus S.A.S, AT&T Inc., Ceres Imaging Inc., Hexagon Agriculture, Intertek Group plc, Nutrien AgSolutions Inc., Raven Industries Inc., SGS S.A., Taranis, Teejet Technologies, Topcon Corporation

Key questions answered in this report:

  • What is the expected global agriculture technology-as-a-service market size in terms of value during the period 2020-2025?
  • What is the expected future scenario and revenue generation by the different types of service, including software-as-a-service (SaaS) and equipment-as-a-service (EaaS)?
  • What is the expected future scenario and revenue generation by different types of agriculture technologies offered as services, including data analytics and intelligence, guidance technology, sensing technology, and variable rate application technology, among others?
  • What is the expected future scenario and revenue generation by the application segments for which agriculture technologies are offered as services, including yield mapping and monitoring, soil management, crop health management, and navigation and positioning, among others?
  • Which region is the largest market for global agriculture technology-as-a-service market?
  • What is the expected future scenario and the revenue generation by different regions and countries in the global agriculture technology-as-a-service market such as North America, Europe, Asia-Pacific, and Rest-of-the-World?
  • What is the competitive strength of the key players in the global agriculture technology-as-a-service market on the basis of the analysis of their recent developments, product offerings, and regional presence?
  • What are the different pricing models available in the global agriculture technology-as-a-service market?
  • How are the adoption scenario, related opportunities, and challenges associated with agriculture technology-as-a-service?
  • What are the market dynamics of the global agriculture technology-as-a-service market, including market drivers, restraints, and opportunities?